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tions is adopted using a fractional-step time discretization with the classical second-order
backward difference scheme combined with explicit extrapolation of the nonlinear term.
The resulting scalar and vector elliptic equations are solved by means of the direct spectral
solvers developed recently by the authors. The spectral matrices for radial operators are
characterized by a minimal sparsity - diagonal stiffness and tridiagonal mass matrix.
Spectral methods Closed-form expressions of their nonzero elements are provided here for the first time,
Projection methods showing that the condition number of the relevant matrices grows as the second power
Spherical coordinates of the truncation order. A new spectral elliptic solver for the velocity unknown in spherical
coordinates is also described that includes implicitly the Coriolis force in a rotating frame,
but requires a minimal coupling between the modal velocity components in the Fourier
space. The numerical tests confirm that the proposed method achieves spectral accuracy
and ensures infinite differentiability to all orders of the numerical solution, by construc-
tion. These results indicate that the new primitive variable spectral solver is an effective
alternative to the spectral method recently proposed by Kida and Nakayama, where the
velocity field is represented in terms of poloidal and toroidal functions.

© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

A central difficulty in the spectral simulation of flows inside a sphere comes from the singularity of the spherical coor-
dinate system at the origin. A mathematically inappropriate treatment of this aspect may compromise the differentiability
to any order of the solution and therefore also prevent the achievement of spectral accuracy, see, e.g., [1], and the references
therein. In a recent paper [2] spectral algorithms for the solution of elliptic equations in a spherical domain have been pro-
posed employing a new basis built on Jacobi polynomials for the representation of the radial dependence up to the sphere
centre. One key element of these direct spherical elliptic solvers is that the shape of basis functions for scalar or vector un-
knowns in the radial direction depends on the angular mode considered. Notably, their number decreases with the latitudi-
nal modal index.

The basic idea underlying these new spectral elliptic solvers is that, as fewer associated Legendre functions are needed for
the approximate representation of latitudinal variations of higher Fourier modes over a spherical surface, also fewer Jacobi
polynomials are needed for the resolution of the radial structure of higher latitudinal modes inside a sphere. As a conse-
quence of the use of the new Jacobi basis, the elliptic solvers do not face any difficulty with the sphere centre much in
the same manner the spherical harmonics suffer no pole problem, and in fact the expected spectral convergence has been
actually achieved in all computational tests [2]. Moreover, the new basis leads to matrices for radial operators characterized
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by a very nice sparsity: for any latitudinal mode, the stiffness matrix is diagonal and the mass matrix is tridiagonal. Remark-
ably enough, all their nonzero elements can be given in closed form, as unveiled for the first time in the present paper. The
condition number of the matrices associated with the radial part of Helmholtz operator grows as the second power of the
degree of the basis, which represents a major numerical advantage in the context of spectral methods. Finally, the basis func-
tions can be divided in two subsets: one subset is zero on the boundary, the other subset is not and can be employed to sim-
ply fulfill Dirichlet boundary conditions.

Since the pioneering work of Orszag [3] several authors have contributed to develop spectral methods for solving the
incompressible Navier-Stokes equations in spherical domains. Without pretending to give an exhaustive account of all these
efforts, we mention only some of the most representative examples. Marcus and Tuckerman formulated a pseudospectral
method using the influence matrix technique to investigate spherical Couette flow [4,5]. The first successful attempt to
use a spectral approximation to the incompressible Navier-Stokes equations in spherical coordinates including the origin
was described in the paper by Stanaway et al. [6] and applied to simulate an axisymmetric vortex ring. Jacobi polynomials
were introduced for expanding the solutions in an unbounded domain, with the radial variable mapped from the semi-infi-
nite interval to a finite range. The method employs a divergenceless spectral (quasi-orthogonal) basis for the velocity field
with the pressure variable eliminated from the problem, following the ideas introduced by Moser et al. to compute fully 3D
flows within plane or cylindrical walls [7] and later employed by Dumas and Leonard inside a spherical gap [8]. Tau-Cheby-
shev discretizations were proposed by Quartapelle and Verri in conjunction with the idea of integral conditions for pressure
to solve the incompressible equation within a spherical gap and inside a sphere [9]. Shen and Wang simulated atmospheric
flows [10] by means of a Galerkin spectral method employing the direct spherical solver developed by Shen in [11]. Finally,
spectral methods have been recently proposed by Mininni and Montgomery employing Chandrasekhar-Kendall eigenfunc-
tions [12], by Guo and Huang using Jacobi polynomials and spherical harmonics [13] and by Kida and Nakayama using poloi-
dal and toroidal functions [14]. The method of the last reference employs a radial discretization decreasing with the
latitudinal modal index, as the spectral elliptic solvers of [2]. Several examples of simulations of rotating flows in spherical
geometries can be found in the monograph of Egbers and Pfister [15].

The aim of the present paper is to develop a primitive-variable spectral method for simulating viscous incompressible
flows inside a sphere employing the aforementioned direct elliptic solvers. When the Navier-Stokes equations are tackled
by a spectral method a number of additional aspects must be addressed. In particular, we develop a Galerkin incremental
projection method with a second-order BDF time integration of the momentum equation and linear extrapolation of the
advection term, extending our previous efforts for flows in Cartesian regions in 2D [16] and 3D [17] to a spherical domain.

The paper is organized as follows. In Section 2, the mathematical problem is stated and the basic elements of the second-
order incremental fractional-step method are provided. In Section 3, we briefly outline the spectral elliptic solvers. In Section
4, the procedures for evaluating the gradient, the divergence and the nonlinear term in weak form are described. Section 5
addresses the Navier-Stokes problem in a rotating frame. Section 6 is devoted to numerical tests for flows in inertial and
noninertial frames, some concluding remarks follow.

2. Navier-Stokes equations and projection method

This paper deals with the motion of a viscous fluid of uniform density inside a sphere Q of radius a, which is governed by
the incompressible Navier-Stokes equations

{?r‘+(u-V)qu2u+Vp=f(",f), V-u=0,

(2.1)
Upo=b, o=y,

where u is the velocity, p = P/p is the pressure per unit density of the fluid, v is the kinematic viscosity and f(r, t) is an exter-
nal force field (per unit mass) possibly acting on the fluid, for example the gravitational field. In the problem above, b(ro, t)
represents the velocity prescribed on the boundary, satisfying [,,n-b =0, and u,(r) is the initial solenoidal velocity field.
The Navier-Stokes problem (2.1) is solved by means of the second-order BDF incremental fractional-step projection
method described in [18,19] in the context of a finite element spatial discretization. In view of the spectral discretization
of interest here, we assume an implicit treatment for the viscous term and an explicit account for the nonlinear term, with
a linear extrapolation of the velocity field at the new time level. As a consequence, the method will be only conditionally
stable, with time-step size limited by a suitable stability restriction.
As well known, the fractional-step approach is based on splitting the time advancement of the momentum equation in
two distinct phases or sub-steps. The first sub-step consists in the following viscous problem for the vector unknown u**1:
{311"“24Aut"+u"1 — W2k =f k+1 _ Vpli _ (ul:rl . V)ul;:rl7

k+1 _ pk+1
ug, =b",

(22)

where f*1! = f(r t;,,) and b = b(r,q, ty,1). Moreover, the extrapolated velocity and pressure are defined respectively by

Uy fork=0

ukl = 2.3
* {Zu"—uk*l for k > 1 (2.3)
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and
Do fork=0
. 3p' — 2p, for k=1
Py = 1(14p* — 11p' +3p,) for k =2
37p* = 5pt 4+ pt?) fork >3

(2.4)

where p, is an initial pressure field which must be provided or envisaged insofar as the incremental method is employed
since the first time step.

The second sub-step consists in projecting u**! onto the space of the divergenceless vector fields that are tangent to the
boundary 9Q. This step can be formulated as the following elliptic problem

{ _vz(pkﬂ _ pk) _ _% V. uk+17
(P = p¥)ye = 0.

Therefore, the projection step assumes the form of a Poisson equation for the pressure increment p**! — p*, supplemented by
homogeneous Neumann boundary condition. Note that no pressure condition is prescribed in the original time-continuous
problem (2.1) and that the Neumann condition in (2.5) results from Ladyzenskaya’s orthogonality theorem once the incom-
pressible step is formulated as a Poisson equation for pressure.

The time integration schemes in problems (2.2) and (2.5) are both second order accurate. The convergence in time of the
method (2.2)-(2.4) and (2.5) has been demonstrated by Guermond [20]. A review of projection methods is given by Guer-
mond et al. [21].

(2.5)

3. Discretized equations in spherical coordinates
3.1. Helmholtz equation for velocity

At each viscous step one has to solve the vector Helmholtz equation in spherical coordinates (r, 0, ¢)

=V +0)u=Ff(r,0,¢), (3.1)

with y >0 and f(r,0,¢) a given source term, supplemented by the Dirichlet condition u(1,0,¢)=b(0,¢), for
dp(1,0,¢)/0r = 0. The radial variable r has been made dimensionless by taking the radius a of the sphere as the ref-
erence length. The vector variable u is first expanded in a Fourier series, dropping the highest cosine component with
m=N, to give
N-1
u(r,0,¢) =u’(r,0)+2y [u"(r,0) cos(mg) — u " (r,0) sin(mg)]. 32)
m=1
The Fourier vector coefficients are u™(r, 0) = u™(r, 0)# + ul"(r,0) 0 + u™ (r,0) , with #, 6 and ¢ denoting the unit vectors of the
spherical coordinate system.
Written in the space of the Fourier coefficients, the operator representing the Laplace vector operator V2 is

2 2 2 9 (g _2m _

am r2 rZsing 90 (Sll‘l(‘). . ) rZsing

2 29 2 1 2m cos 0
O = 2 90 O 12 sin? 0 12sin® 0 ’ (33)

2m 2m cos 0 82 1

r2sin0 12 sin? 0 m. - 2sin? g

where the scalar operator 8,2,1, with m=0,1,2,..., is defined by

10 d 1 o/. .0 m?
2 _1O0(,0)\ 1 O gy m
O =1 gr <r 8r> 2 sing 90 <Sm 080) 2sinto (34)
The equation system for the coefficients of the m-th Fourier mode reads
ur fn(r,0)
k| up | =|frao | (3.5)
u," fm(r,0)

Thus, for m # 0 the three spherical components of the vector Fourier mode are coupled together, while for the first mode
m = 0 only the first two components u? and uf are coupled together.

Once the uncoupling technique described in [2] is applied, the new unknowns become uf', u5* and u¥', and they are related
to the former by the transformation
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um-1 um , sing cos 6 1 u
ur | =e|u | = 7 V2cosf —2sind 0 T (3.6)
ump! u," sin g cosf -1/ \u,"
The transformation @ diagonalizes the matrix operator 82 in the sense that
2,0 0
0 06e"=|o0 2 0 . (3.7)
0 0 8?n+1

The same transformation is applied to the right-hand side f.

The solution of the equations for the m-th Fourier mode with m # 0 proceeds as follows: first, the transformation @
is applied to the Fourier coefficient f™ of the source term f of the Helmholtz equation, then the three uncoupled ellip-
tic 2D equations are solved and finally the inverse transformation to the spherical components is performed. For m =0
the solution procedure is the very same, but the transformation matrix @ and the diagonalized vector operator are
replaced by

sin@ cos0 0 »#? 0 0
Oy=|cos0 —sind 0| and ©,9;0,=| 0 32 0 |, (3.8)
0 0o 1 0 0 &

respectively. When acting on the full set of the Fourier expansion coefficients of a vector field, the pair of matrices @ and @,
defines the operator ® between the two representations of the vector mode:

" m=04+1,..} =O{u", m=0,+1,...}, (3.9)

where #" = (uf',uf’,uf") and u™ = (U, uf, u}).

3.2. Uncoupled scalar Dirichlet problem

The scalar elliptic equation for each of the three uncoupled velocity components u”, with y = 1,2, 3, will be written as
(=0 + ™ = f™(r,0), (3.10)
supplemented by the Dirichlet boundary condition u™(1,0) = bm(é)),Afor 0 < 0 < m. The unknown variable u™(r, 0) is then ex-
panded in terms of the normalized associated Legendre functions P}'(cos )
Zu[ rPM(cosh), -N+1<m<N-1, (3.11)
{=m|

with the basis functions 13;“ (z),z = cos 0, related to the standard associated Legendre functions P}’ (z) by

PR = [ @, (3.12)

The elliptic Eq. (3.10), once expressed in weak form, reduces to the following set of equations for the modal unknowns
g (r):

./01 U{ ;r <r %) + [0+ 1) + 91 u;”}dr: /0.1 ry(r)f(r)dr, (3.13)

where 2(r) is a suitable weighting function and

r) = /O ’ f™(r,0) P™(cos 0) sin 6do. (3.14)

Eq. (3.13) is supplemented by the boundary condition u"(1) = b}".
Finally, the modal unknown uf'(r) is expanded as follows

N—¢

up(r) = _uf Bi(r). (3.15)

i=0
exploiting the Jacobi polynomial basis [2]

rt fori=0,

Bi(r) = 04 (21 -
N =q@r-1) {(lrz)r‘P 902 1) fori> 1.

(3.16)
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Thus the complete spectral expansion of the Fourier component u™(r, 0) of uncoupled velocity is given by the relation

Z {Zu,[ , ] P"(cos 6). (3.17)

L=|m]|

The corresponding spectral version of the weak Eq. (3.13) for the modal unknowns u]’(r) consists in an algebraic sys-
tem of equations, described thoroughly in [2]. After integrating by parts in (3.13), the linear system assumes the
form

(D + yMg)upy = fig, (3.18)
where ufj = {u, i=0,1,...,N—¢} and the matrices Dy and M, have elements defined by (using the mapped variable
s=2r>-1)

U 145\2dQi(s) dQi(s) e(e+1) [1+s\ P,
iy o= d d ; 5 < <N - .
Dy [1 {4( 5 ) ds ds + 2 ( 3 ) Qi(s)Qy(s) pds, 0 (i,i) <K N—¢, (3.19)
1 (1 /1+5\? ,
My =4 / 1 (7) Q/(5)Q)(s)ds, 0< (ii)<N-L. (3.20)

The order of a matrix with subscript |y is N — ¢+ 1, and is therefore (N+1),N,(N—-1),...,2,1for ¢=0,1,2,...,N,
Matrix Dy, is diagonal while matrix My, is symmetric tridiagonal [2], their nonzero elements are shown here for the first
time to be

¢ fori=0,
Duii=q 22 foris1 (3.21)
2it(+] =
and
3 fori=0,
M[[] ii = 2 .
(2i+/—%)(2iii+%) (2i+643) fori > 1,

(3.22)

2 .
M (20+3)(2+5) fori=0,
Qiit1 = —i(i+1) s

2(2i+6+1) (2i+6+3) (2i+0+3) fori > 1.

The tridiagonal character of the mass matrix M|, follows from the definition of the basis functions Qf (s) and from the orthog-
onality of the Jacobi polynomials PE”J) (s) and the nonzero elements of the mass matrix are obtained using this relation. The
diagonal character of the stiffness matrix D;; can be proved' starting from Eq. (3.13) and using the Jacobi orthogonality and
differential equations.

The components of the right-hand side of linear system (3.18) are defined by

f{"—4/< ) m(( ))ds+<bt> (3.23)

where (b.t.) denotes a boundary contribution that is irrelevant under Dirichlet boundary conditions.

In the uncoupled algorithm, the Dirichlet boundary condition is taken into account by means of a lifting, which consists in
relieving the nonzero boundary value by an arbitrary function and obtaining a problem supplemented by a homogeneous
boundary condition. This is achieved by reducing the matrices of each scalar spectral component to their lifted counterparts,
which are denoted by

Ajg =Dy +yMyy, (3.24)
where Ay, Djg and My, denote the matrices of the lifted problem. Thus, the independent equations for the uncoupled com-
ponents of the vector unknown will be

Amu{zrz*“ =gt 1=1,23, (3.25)

where gj* = fii” — A}, by, with y = 1,2, 3. Here ug”, with = 1,2,3, denote the vector unknown of the lifted problem, g/, ”
is its rlght hand 51de after including the effect of the nonzero boundary value, and bﬁ‘ are the expansion coefficients of the
velocity boundary value b on the sphere. Moreover, the original matrix Aj; before the lifting has been partitioned into an

1 P. W. Livermore, private communication, 2008.
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Fig. 1. Condition numbers of matrices (3.24) of the Dirichlet problem. Left: distribution of the condition number with the latitudinal modal index ¢ for
different truncations and y = 1000. Right: maximum condition number as a function of the truncation N of the radial expansion for different values of .

“internal” component Ay, with elements a;,;; such that 1 < (i, i') <N — ¢, and a “surface” component represented by its first
column

A, ={agio, i=1,2,...,N -1}, (3.26)

with the first diagonal element a0 eliminated.

In Fig. 1 we report the condition numbers of the matrices Ay. The left plot shows the dependence of the condition number
on the radial modal index ¢ for different truncations with y = 1000. The maximum condition number is found to correspond
to the intermediate wavelengths of the truncated radial expansion. The plot on the right gives the maximum condition num-
ber for different truncations and different y values. For small and intermediate values the maximum condition number de-
pends quadratically on the truncation N; thus the spectral matrices for the Dirichlet problem of the proposed basis have an
optimal conditioning. At higher 7, for instance for y = 10°, the maximum condition number is higher for moderate truncation
but reveals an increasingly weaker dependence on N.

3.3. Neumann problem for pressure

At each incompressible step one has to solve the Poisson equation —V?p = q(r, 6, ¢), where the given source term q(r, 0, ¢)
satisfies [qdQ = 0, supplemented by the homogeneous Neumann condition dp(1,0,¢)/0r = 0 on the spherical boundary.
The Poisson-Neumann solver is thoroughly described in [2] and is briefly recalled here for convenience. The pressure field
is given by the following complete expansion

p(r,0,¢) = {Z P2, B } )[PO(cos 6) +2 Z {Z {Z pEmBL(r) ]P;’"(cos 9)} _C(s’lslg'g:i;) + Py PN (cos 6) cos(Ng).

(= m=1 (=m [ i=0
(3.27)

The superposed cosine and sine functions in the external summation correspond to the two signs in +m involved by the Fou-
rier sum over m. In expansion (3.27) the presence of the last term of the cosine component of order N and the absence of the
coefficient 2 in front are driven by the FFTW package employed [22]. The total number of cosine and sine expansion coef-
ficients for pressure is equal to (N + 1)(N +2)(2N + 3)/6.

The equation for p™(r,0), with —-N+1 <m <N, is

(=% + )™ =q"(r,0), (3.28)

and is supplemented by the derivative boundary condition dp™(1,0)/0r = 0, for 0 < 0 < ®. g™ (r, 0) are the Fourier expansion
coefficients of the source q(r, 0, ¢).
The pressure modal unknown p{"(r) must satisfy the second order equation expressed in weak form as

/(;1 v{ ;r <r d{%) + 0+ 1)pl }dr = /01 r2u(r)qn(r)dr, (3.29)

and the derivative condition dp]'(1)/dr = 0, with »(r) denoting a suitable weighting function. After integrating by parts and
taking into account the natural boundary condition, the spectral approximation of the weak Eq. (3.29) leads to the fully diag-
onal linear system

Dypfj = ay- (3.30)

where pjj = {p]}, i=0,1,...,N — ¢} and with matrix Dj; already defined in (3.21). Notice that the first diagonal matrix Dy is
singular in conformity with the singularity of the Neumann boundary value problem for the Laplace operator.
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4. Evaluation of the explicit terms

To complete the description of the algorithm for the spectral simulation of incompressible flows it is necessary to show
how the explicit terms of the equations are evaluated. In the momentum equation two terms, the pressure gradient and the
nonlinear term, must be considered, while in the pressure Poisson equation only a divergence term must be evaluated. In the
proposed method all these terms, expressed in weak form, are calculated by a pseudospectral technique, which requires to
introduce the following sets of points along the three spherical “directions”:

re = ((1 +sg>/> g:L---,NH, (4.1)
Oh=cos'z,, h=1,....N+2, (4.2)
po= k=1 1o (4.3)
k N 3 IR} ) .

where s, are the (0,1) Gauss—Jacobi quadrature points over the interval |s| < 1 and z, are the Gauss-Legendre points over the
interval |z| < 1. The pseudospectral technique amounts to the following two steps:

1. compute the point values of the required term (gradient, divergence, nonlinear);
2. I2 project, with w = sin 6, the term on the basis functions by Fourier transform and Gaussian quadrature.

The two steps are performed by standard techniques, so that it will suffice to give here only the essential elements re-
quired by the present method, for details the reader is referred to [23].

A scalar function u = u(r, 0, ¢) defined over the sphere will be represented either by its expansion coefficients, organized
in the structured three-dimensional array,

U={u,, 0<i<N-¢ |m<l<N, -N+1<m<N}, (4.4)
or by the three-dimensional rectangular array
U={u(rg,0h,¢), g=1,...,N+1, h=1,... ,N+2, k=1,...,2N}, (4.5)

of its point values over the aforementioned spherical grid.
The point values U are computed from the expansion coefficients U by the following transformation

U=r'(PBU)), (4.6)

where [ denotes the Fourier transform and P and B amount to multiply each coefficient by the value assumed by the cor-
responding basis functions, normalized associated Legendre function and radial basis function respectively, on the Gauss
points.

The L2, projection of the point values ¢ onto the basis functions requires to introduce the weights v, of the Gauss—Jacobi
quadrature formula with N + 1 points and also w;, of the Gauss-Legendre formula with N + 2 points. One has

U = 3 Bo(Po(FL))), (47)
where the operators B; and P¢ include the multiplication by the approprlate weights of the Gaussian quadrature and
by the point values of the basis functions. Transformations P, P¢,B,B; are actually performed by matrix-matrix
multiplications.

We analyze first the transformations needed to evaluate the nonlinear term. The transformations for vector fields in
spherical coordinates are more complicated since point values are required for the spherical components of the velocity field,
which are indicated by u,,u, and u,, to give U = (U, V, W) = (Ur, Uy, U,), whereas the structured arrays of the expansion
coefficients are known for the uncoupled components u,,u, and us, denoted collectively as U= (U1,U,,Us3). These two sets
of vector components are related by the transformation operator ® defined in Section 3, which is acting in the space of
the Fourier coefficients of the velocity components. By taking into account the role of the uncoupling transformations @
and @y, the transformations for the velocity vector variable and the L2, projection of the nonlinear term will be indicated for-
mally as

—

U=r'©"'(P(B0)) and ﬁ:}lm@(;(@(ﬂm)), (4.8)

respectively. The evaluation of the nonlinear term (u - V)u in weak form proceeds as follows. First, transform the expansion
coefficients U of the uncoupled velocity components to the values & of the spherical components in the physical space by
means of 4 = F~'(® ' (P (B(0)))). Second, evaluate the derivatives i4;,, Uy, and Uy, and similarly for the other two spherical
components V and W. This requires to know the point values of the derivative of both the radial basis functions, namely,
dB!(r)/ds, and the normalized associated Legendre functions, namely, dlA’L’"‘(cos 6r)/do.
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Then determine the spherical components of the nonlinear term (u - V)u through the expressions

N =US Uy + RV Uy — V) +RIWH UsyS — W), (4.9)
No=UNVy +RIVE (Vo +U) + RIW 3 (VS = WCS™), (4.10)
Ny =UY Wy + RV Wy + RIW S (U+WyS' +VCST), 4.11)
where ¥ denotes the element-by-element multiplication of arrays and where we have introduced the diagonal matrices
R =diag(ry, g=1,...,.N+1), (4.12)
S =diag(sinby, h=1,...,N+2), (4.13)
C =diag(cos Oy, h=1,...,N+2). (4.14)

We notice that the left multiplication by R~! must be done on any column and for any plane k = constant of the subsequent
3D array. A similar remark holds for the right multiplication by the diagonal matrices S~' and C. Finally evaluate the L2 pro-
jection of the nonlinear term by means of

N:%Bc(ﬂﬁ’c((@([F(N)))) (4.15)
The evaluation of the gradient term proceeds along the same lines. From the expansion coefficients
P={p], 0<i<N-¢ |m <¢{<N, -N+1<m <N} of the pressure, one first evaluates the spherical components of its
gradient in the Fourier space, but at the grid points (g, 6), i.e. F~! is omitted. Then, the transformation @ is applied to yield
the gradient components in the uncoupled basis. Finally, the term is projected to give its contribution to the momentum
equation in weak form.

The divergence of velocity is evaluated by first transforming the expansion coefficients Z{ into the values at the grid points
(rg, 0y), and obtaining also the corresponding derivatives with respect to r and 6. Then, the transformation @ is applied to
obtain the spherical velocity components and their derivatives. Finally, the expression of divergence is evaluated, paying
attention that the transformation ® depends on 6, and projected to have the weak term contributing to the right-hand side
of the scalar pressure equation.

5. Navier-stokes equations in a rotating frame

In a noninertial frame of reference the equations governing the fluid motion must be modified by including the body
forces acting on the fluid as a consequence of the frame acceleration. In particular, if we consider a frame rotating with a
constant angular velocity 2 with respect to a fixed (i.e. inertial) system, the body force (per unit mass) consists in the
Coriolis force —292 x u plus the centrifugal force — x (2 x r), so that the momentum equation in the noninertial frame
reads

%+(u-V)u—vV2u+Vp=—ZQ><u, (5.1)
since the centrifugal term has been incorporated in the reduced pressure variable p defined by
_ P(r7 t) 1 2
p(rt) = o 2 |2 x r|". (5.2)

When the rotation speed of the reference frame grows, the Coriolis term on the right hand side of the momentum equation
becomes increasingly important so that taking into account the Coriolis term explicitly could lead to instabilities of the
numerical scheme for high rotation speeds and to time step constraints [24]. In this section it is shown an original technique
to take into account the Coriolis term implicitly and efficiently in the vector Helmholtz solver thus avoiding any unnecessary
time step restriction.

5.1. Coriolis term in the uncoupled basis

Taking the z axis of the spherical coordinate system in the same direction of € entails 2 = 22z, where 2 is the unit vector
along z. By expressing 2z in terms of unit vectors of the spherical coordinate system, 2 = Q(cos 0 — sin 66), the vector prod-
uct 2 x u of the Coriolis term assumes the form

Q x u = Q(cos Ot —sin00) x (u, T+ uy0 + uy ¢) = Q[—sin Ou, ¥ — cos Ou, 0 + (sin Ou, + cos Ouy) ). (5.3)
Written as a column vector, we have:
Ay —sinfu,
Qxu=\| 4 | =Q —cosfu, . (5.4)
Ay sin 0u; + cos Ouy
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To obtain the representation of the Coriolis term above in the basis of the uncoupled components discussed in Section 3, we
have to apply the transformation @ to the Fourier components with m # 0 of the Coriolis term, namely to the vector

A7 —sinou}
Qxu"=| A7 | =0 —cos Oulf : (5.5)
A" sinu;™ + cos Ouy™

The representation of the Coriolis term in the basis of the uncoupled components is therefore

Al 0 sinGu;™ + cos fuy™ — uf
o@xu™=0| A7 | = 73 0 . (5.6)
A" —sinu;™ —cos Ou;™ — uy
Expressing this term as a function of the uncoupled components #™ = (uf', u%, u?) of velocity gives:
u3—m+1
0|2 x ("™ =Q 0 . (5.7)
_ul—m—l
For the first Fourier mode m = 0, the transformation is @, and we can compute
A —ud
(R xu’) =0y 4 | =0 0 , (5.8)
A sin 6u? + cos fud
namely, making explicit the dependence on the uncoupled components it of the Fourier modes with m = —1 and m = 1:
_u;
2 x (O] =02 0 |. (5.9)
u-l
1

To see the contribution of the Coriolis term to the weak vector equations, let us remind the spectral expansion of the first
uncoupled component uf'~!(r, 6):
N
urtr0) = > u " (r) P Y(cos 0) Z {Z ul Bl (r) }P[”l(cos 0). (5.10)

(=|m-1| (=|m-1|

The expansion of the first uncoupled component of the Coriolis force is similar and yields

L (1. 0) Z |:Zum+133( }Péml(cosg). (5.11)

r=m—1|

The Coriolis contribution to the weak discrete equation is obtained by multiplying u;™*!(r, 6) by the weighting function
Qi (s )P"" !l(cos 0) and by the dimensionless spherical metric factor 12 sin = L5 sing and integrating over the variables s
and 0. A direct calculation yields

us™(r,0) — Mgu"? (5.12)

H

where matrix My, has been defined in (3.20) and the arrays uj;"**

up®? = {ul??, 0<i<N—¢} for [m| <L<N. (5.13)

The calculation of the Coriolis contribution to the third component of the weak uncoupled equation is analogous. Thus, the
vector quantity proportional to the contribution due to Coriolis force to the weak equation for the any generic mode with
¢>0and m # 0, and for the single special mode with ¢ = 0 and m = 0, are, respectively,

are defined, as usual, by

QM[/] u[;]m+1;3 —QM[O] u]
0 and 0 . (5.14)
—OMy u[;]mfm oMy u[E)]H

The exchange of sign in the components of the special mode with respect to any other mode must be noticed.
5.2. Elliptic system with Coriolis coupling

The Coriolis term is now added to the momentum equation and taken into account in an implicit manner, to give:

(-V2 +ax +)u=f(r), (5.15)
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where « =2v~'Q and y = 1/(vAt). By recalling the uncoupled form of the Helmholtz equation of the time-discretized
problem discussed in Section 3, the first and third components of each spectral mode with m # 0 lead to the two
equations

i3 —1;
Ay ﬁ”wM IR i (5.16)
Agu? — oMy ”'”” =i, (5.17)
where A + 7M. In the two equations above there are four different unknowns, namely ufj "', u;, ™", uf}*'? and

um('”“ i On the other hand the index m can assume positive and negative values, so that we can con51der the two equations
with m > 0 and derive the equation pair corresponding to negative m by replacing m with —m. In this way we obtain the
other two equations

A, ™ oM ufp? = (5.18)

13 11 13
Ay [4](m ! — oMy ujy :f[z]m 2. (5.19)

We now note that the first Eq. (5.16) of the first pair has the same unknowns, u&‘]’” and u[;]('"’”e', of the second Eq. (5.19) of
the second pair: thus we can write the following system of two coupled equations

—11 —(m-1)3 ~14
Am U% + oMy llm(m ) :f[g]' ,

(5.20)
~1:11 —(m-1)3 _ ¢~(m-1)3
—oMg iy + Ay, =fy
Setting m — 1 — m, this system can be written more simply as
At + aMyu, ™ = i
—m;3 (5.21)
OCM[; +A4]u —f[/] .

In a similar way, the second Eq. (5.17) of the first pair has the same unknowns, uﬁ“ 3 and uy, ("” ! of the first Eq. (5.18) of the

second pair, so that we can write a second system of two coupled equations

Agu,™ oM up® = f"!

—aMg u, ™ + A [;7;3

The two systems are characterized by the same matrices so that they can be considered altogether by letting m running in
the interval [-N + 1, N — 1], but skipping the value m = —1, which corresponds to the special mode characterized by the just
mentioned sign exchange in the components 1 and 3.

After including the possibly nonhomogeneous Dirichlet boundary conditions, the system is lifted to

A[l’] u[m:] + O(M ] u—m:3 _ gm;l
! 3 (5.23)
—aMy ulf' + Ay =gy
where all the matrices are the lifted counterparts of the matrices pertaining to all modes, for instance:
AV] = D[g] + ’))M[g], (524)

and the right-hand sides g !and g’"13 are the lifted counterpart of f[Q’]“‘ and f[;]’"ﬁ, including the effect of nonzero boundary
condition. This system can be wrltten also as follows:

i1 ;1

Ay +aMy (Ui &1
—oM A -m3 | T -m3 |° (5.25)

@ Aua uy &
Let us now reorder the equations and the unknowns by writing the components 1 and 3 of each radial mode consecutively,

and introduce the reordered vector of the unknowns
-m;3 1 -m3 -m;3

UF;] = {U[m “[z]nll ) “’[7]27“[4"21 IREEE “[z]N o “[z]nzzl o (5.26)

and 51m11ar1y for the right-hand side gfj. By virtue of the new ordering, the coupled system of two equations for u™! and

yfore=m—-1mm+1,... N, translates into a linear system with a 2 x 2-block tridiagonal profile for the new un-
known uf
Bygui =gy, (5.27)

where By is a nonsymmetric matrix of order 2(N — ¢+ 1) and with a bandwidth of 2 x 3 = 6.
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The system corresponding to the special mode +1 is

1.1 1;3 ~1;1
Ag ug " — aMgug =gq 508
aM -1;1 A 13 _ 413 ( . )
o Ug ~ + Ao Ug =8
One introduces the unknown with reordered components, as follows
_ -1;1 1;3 -151 1;3 -1;1 1;3
U = {”[0]1 »Uioj1s Ypoj2 > Y20 -+ U[O]N’U[O]N} (5.29)
and similarly for the right-hand side gj,. Therefore, the special system for the particular mode +1 is
B[o] up = 9[0]7 (530)

where the off-diagonal blocks of matrix By have opposite signs with respect to those of matrices By, with ¢ > 0. The solution
of this system can be obtained using matrix By by changing the sign of the second component of the source and of the
solution.

6. Numerical results

To test the spectral solvers for the Navier-Stokes equations in a sphere, the exact solution must be infinitely differentiable
throughout the computational domain, including the sphere center. This can be easily achieved by defining the pressure and
velocity fields as a function of the Cartesian coordinates and in terms of the Cartesian components. As far as the error of the
numerical solution is concerned, we measure the errors in terms of Lfv norm, with weight w = r? sin . In particular the norm
of a vector function represented in spherical components is defined in the standard way

2 2 2 2
i = (el -+ uollZ + [l %
6.1. Spatial convergence and LBB condition
The spatial accuracy of the proposed spectral approximation is verified against the exact analytical solution to the steady

state Navier-Stokes equations defined by the following velocity and pressure fields, expressed in Cartesian coordinates, as
follows:

us(x,y,z) = (sinx)(cosy)(sinz)
uy(x,y,z) = (cosx)(siny)(sinz)
us(x,y,z) = 2(cosx)(cosy)(cosz)
p¢(x,y,2z) = 3(cosx)(cosy)(cosz)

The velocity field above is solenoidal but the steady-state momentum equation has a nonzero source term given by
f(r) = =V2u® + Vpe + Re(u® - V)ue, to be added to its right-hand side. The vector field f{r) is easily evaluated in Cartesian
form and then transformed in spherical components. The spectral solver is run to produce the steady state numerical solu-
tion in a sphere of radius a = 8 for the Reynolds number Re = 10. In Fig. 2 the velocity and pressure errors in the L2 norm of
the computed solutions for different spectral resolutions with N = 20, 25,30 and 35 are reported.

The figure contains the spatial convergence rate of two implementations of the solver with different spectral approx-
imation of the pressure field. In fact, for the incompressible equations the spatial discretization of the pressure is known
to be subject to a stability constraint, called LBB condition. When this condition is violated, spurious pressure modes
appear in the computed pressure field. Moreover, for spatial discretization of local type, such as finite elements or dif-
ferences, unphysical spatial oscillations are generated also in the velocity field, provided the time-step is sufficiently
small [25].

The situation is slightly different for approximations of global type, such as the spectral method, of interest here. It has
been shown in [26] for Galerkin-Legendre approximations to the Cartesian Navier-Stokes equations that the violation of LBB
condition produces spurious spatial oscillations, but only in the pressure field while the convergence of the velocity is unaf-
fected. In any case the development of spurious pressure modes is prevented in the spectral solution simply by using a poly-
nomial representation for the pressure of two degree lower than that used for the velocity. This treatment must be adopted
for the spatial discretization in each space direction with two boundary conditions.

In the present case of spherical domain, with only one non-periodic direction, the LBB condition is violated when choos-
ing the same basis to represent the radial dependence of both velocity and pressure. The modification in the radial expansion
in Jacobi polynomials consists in reducing the dimension of only the mode m = 0,/ = 0, which is the subspace of functions
independent of 0 and ¢. This is easily obtained by eliminating the highest mode of this subspace. The modified expansion of
the pressure field including the order reduction to satisfy the LBB stability condition in the radial direction would be as in the
complete expression (3.27) but for the first term of the expansion, corresponding to m = 0 and ¢ = 0, which is replaced by the
following reduced series
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Fig. 2. Convergence rate of the spatial discretization error. The two velocity errors are nearly identical and the corresponding curves are almost
indistinguishable in the plot.

N—

1
V2 B (r), (6.1)

—_

where the occurrence of —1 in the upper extreme of the sum must be noticed and where we have used 133 =1/v/2. Fig. 2
shows the convergence curves of the velocity and pressure errors for the solver with Jacobi polynomials of equal order
for u and p, violating the LBB condition, and for the solver with a pressure polynomial one degree less than that of velocity,
thus respecting the LBB condition. The curves show the lack of convergence of pressure of the equal order approximation and
also that the velocity solution is equally accurate and convergent irrespective of the fulfillment of the LBB condition, simi-
larly to the result established and verified for the Cartesian case in [26].

To illustrate the nature of the pressure spurious modes in the spherical problem, in Fig. 3 the spatial distribution of the
pressure difference between the numerical and the exact solutions is reported for N = 30 in one quarter of the circle of radius
a = 5 on the plane ¢ = 0. These oscillations are found symmetric with respect to the sphere centre and therefore the plot is
representative of the situation of the pressure field throughout the sphere.

In Fig. 4 we report the pressure difference of the solution produced by the solver respecting the LBB condition according
to the reduced expansion in (6.1). The left plot gives the level curves of pressure error while the right plot gives its 3D rep-
resentation. The complete elimination of the spatial oscillations can be appreciated together with a concomitant reduction of
the error by six orders of magnitude.

6.2. Time convergence
The time accuracy of the second-order BDF scheme is verified by comparison with an exact solution to the time-depen-
dent Navier-Stokes equations. Consider first the stationary 2D velocity field
us(x,z) = — cosx sinz,
u3(x,z) = sinx cos z,

which is solenoidal. The time-dependent velocity field solution to the unsteady 2D Navier-Stokes equations and the corre-
sponding source term are given by
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Fig. 3. Spurious pressure modes of the steady solution for Re = 10 with N = 30. Only a quarter of the circle of radius a = 5 on the plane ¢ = 0 is shown.
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Fig. 4. Pressure error of the method satisfying LBB stability condition by elimination of the highest Jacobi polynomial in pressure radial expansion. Steady
solution for Re = 10 with N = 30 in the half circle of radius a = 5 on the half plane ¢ =0, x > 0.

u(x,z,t) = w(x,z)g(t),
2g(t
Fez0 = wxa) g0+ 5|
e
The pressure field of this time-dependent solution is given by

P(x.2,1) = — [c0S(29) + cos(22)}g2(0),
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Fig. 5. Convergence rate of the time discretization error in (0, T; LZ) norm, for N = 30.

where we assume g(t) = sin® t. This Cartesian velocity field in the vertical plane x — z is transformed in its 3D counterpart in
spherical components u;, u, and u, to test the Navier-Stokes spectral solver inside a sphere. The velocity boundary values are
determined from the exact solution as b(0,¢,t) =u(a,0,¢,t). Similarly, the initial velocity field is taken as
uy(r) = u(r,0) = u’(r)g(0) = 0. Finally, the initial pressure field required by the second-order incremental BDF scheme is ta-
ken as p,(r) = p(r,0) = 0. The exact solution for Re = 10 is assumed and the domain is taken the sphere of radius a = 5. The
temporal convergence is measured in the norm (0, T; L?).

Fig. 5 shows the decrease of the I°(1,2; L?) error of velocity and pressure when the step-size At decreases from At = 0.01
to At = 10~*. The second-order accuracy of the solution algorithm is clearly confirmed.

6.3. Helmholtz-Coriolis solver

To verify the correctness of the spectral elliptic solver for the vector problem with the Coriolis term taken into account
implicitly, we have considered an analytical test built on an exact solution consisting of the vector field defined in terms of its
Cartesian components:

U, = et (x—x1)2+d; (y-y1)* +2-21
u, = eCz(X*X2)2+d2(Y*J'2)2+Z*ZZ

u, = e (x—x3)2+d3(y-y3)* +2-23

with all the parameters given by

¢ =1, d1 :2, X1 :0.]7 Y1 :0.27 Z1 :0.3;

C = 2, dz = 3, Xy = 027 Y, = 037 Zy = 047

C3 = 3, d3 = 47 X3 = 03. Y3 = 047 z3 = 0.5.
The vector Dirichlet problem for the Helmholtz—Coriolis vector Eq. (5.15) is solved for y = 1.5 and « = 1 in the unit sphere
r < 1 with the analytical solution defined above for the indicated values of ¢; and d;, for i = 1,2, 3. The errors of the spectral

solutions for different spatial resolutions are reported in Table 1. These results demonstrate the spectral convergence of the
solver with an implicit account of the Coriolis term.
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Table 1

Vector Dirichlet problem for Helmholtz-Coriolis operator with y = 1.5 and o = 1 inside the unit sphere. Exact solution: see the text.

N L™ error L% error
15 6.1x 1072 28x1072
20 48x107* 1.8x 107
30 28 x107° 1.0 x 107°
40 8.1x10 "2 1.9 x 10712
50 8.1x10 "2 3.1x1012

6.4. Flow in a precessing and spinning sphere

The Navier-Stokes solver with the implicit account of the Coriolis term described in Section 5 is tested by computing the
flow in a rotating and precessing sphere and comparing the computed results with the solution given by Kida an Nakayama
in [14]. The fluid motion in a sphere of radius a is driven by the rotation of its surface around two orthogonal axes. The sphere
is rotating around a horizontal axis with a constant spinning angular velocity Q.. This axis rotates around another, vertical,
axis with a precession angular velocity Q. The fluid motion is described in the precessing frame and the Cartesian coordinates
(x,y,z) are taken with z axis coincident with the precession direction of I' and the x axis coincident with the spinning axis of
the sphere. The boundary conditions for the (dimensional) velocity of this problems are

Upg = b =aQk x I = —aQ,sin ¢ 0 — aQ; cos 0 cos ¢ ¢.

In this problem, the variables are normalized by taking a and Q2 as reference of length and time, and this leads to two dimen-
sionless control parameters
a’Q Q
Re=—" and I'=—.
v Qs
The dimensionless Navier-Stokes equations assume the form

ou
ot

After the time discretization, the vector elliptic equation to be solved at each time step reads
(—V? +2Rel x +y)u = f(r,0,¢),
where typically 7 = Re/At.

+2qu—%vzu+Vp:—(u~V)u.

Fig. 6. Surfaces described by the streamlines passing through the points (0, —0.57, 0) (left), (—0.3, 0.30, 0) (center) and (0.77,0.5,0) (right), of the steady

state flow inside a rotating and precessing sphere for Re = 500 and I" = 0.1. Comparison of the solution computed by the present method (upper) with the
solution of Kida and Nakayama [14] (lower).
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Fig. 7. Velocity in three planes normal to the z axis of precession: from top to bottom z = —0.666,z = —0.333,z = 0. The arrows represent the velocity
difference of fluid motion with respect to the rigid rotation around the x axis with spinning angular velocity ;. Contours indicate the magnitude of the z
component of the velocity difference.
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Steady solutions have been calculated for moderate precession velocity I = 0.1 by Kida and Nakayama using a spectral
method based on a representation of the velocity field in terms of poloidal and toroidal potentials [14]. In the range Re < 500,
each streamline has been found to localize on a surface of toroidal shape that becomes more and more complicated as Re
increases. We have compared the solution provided by the proposed spectral solver with N = 50 to that given in [14] for
the highest value Re = 500 considered there. The steady solution is obtained by means of the scheme with the implicit treat-
ment of the Coriolis term using At = 0.005.

In Fig. 6 the three toroidal surfaces corresponding to the streamlines passing through the points (0, -0.57, 0), (-0.3, 0.30, 0)
and (0.77, 0.5, 0), respectively, are compared with the surfaces given in [14]. The shape of the three surfaces is in fair agree-
ment with the reference solution given in [14].

For a global understanding of the flow, it is convenient to describe the fluid motion in a reference system fixed with the
spinning sphere boundary. This requires a plot of the vector field of the velocity difference u — ©; x r, as done in Fig. 7 for
three different planes at z= —0.666, z = —0.333 and z = 0. In the figure isolines of the z component of the velocity are also
reported. The flow has a symmetry with respect to the sphere centre. A large circulation cell is established around a direction
close to the line x = y,z = 0. On this main flow a secondary flow circulating about the direction x = —y,z = 0, perpendicular
to the former, but with smaller velocity is superposed.

7. Conclusions

This work has developed a primitive-variable spectral method for simulating incompressible viscous flows inside a
sphere, including the possibility of a rotating spherical container. The focus of the present effort has been to formulate a
method in which the singularity of the spherical coordinates at the sphere center is coped with ab initio in the formulation
of the spectral basis without introducing any unnecessary or even harmful over resolution near the sphere center and axis.
Moreover, the aim of the work was to develop a Navier-Stokes solver as simple as possible. This objective has been reached
thanks to two original components of the numerical scheme.

First, we have employed the new basis relying upon Jacobi polynomials introduced in [2] to represent radial variations of
the solution of a scalar elliptic equation. In this basis the order of matrices for the radial operators decreases with the lat-
itudinal modal index. The basis functions have been constructed so as to satisfy the regularity conditions on the expansion
coefficients of spatial functions, described in terms of spherical coordinates, so that their infinite differentiability throughout
the sphere is assured.

Second, we have described the unknown velocity by its spherical components but have also employed a transformation to
a different set of velocity components in the Fourier space that allows a fully uncoupled solution of the vector elliptic equa-
tion. This transformation together with the properties of the associated Legendre and trigonometric functions reduces the
solution of the 3D vector elliptic equation in spherical coordinates to a suitable set of fully uncoupled ordinary differential
equations.

The solution of the split equations for velocity and pressure of the fractional-step projection method requires the evalu-
ation of the gradient and divergence operators and of the nonlinear term. Since the basic unknowns in the proposed spectral
method are the expansion coefficients (no collocation) and those of velocity are the uncoupled components, the evaluation of
the three terms in spherical coordinates has been formulated by a simple pseudo-spectral technique.

For applications involving flows in spheres rotating around a fixed or moving axis we have also analyzed the situation of
the governing equations in a noninertial reference frame rotating with a given angular velocity. We have described a mod-
ification of the velocity field solver that includes implicitly the effect of the Coriolis force on the fluid in the rotating frame.
Taking into account the noninertial force in an implicit manner introduces a coupling between two of the three uncoupled
velocity components. A comparison with previous numerical results has been provided that successfully checks the Navier—
Stokes spectral solver in the noninertial reference frame.

In all the computed tests the correctness of the proposed solution schemes has been verified and their expected spectral
convergence confirmed.
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